

mLAC Journal for Arts, Commerce and Sciences (m-JACS)**Volume 4, No.5, January 2026, P 15-24****ISSN: 2584-1394 (Online)****AI IN THE CLASSROOM: BUILDING DIGITAL READINESS FOR
FUTURE BUSINESS LEADERS**Divyesh Kumar^{*1}, S Sathyeshwar²¹Associate Professor, MBA Department, Jyothy Institute of Commerce and Management, Bengaluru.²Principal, Jyothy Institute of Commerce and Management, Bengaluru^{*} Corresponding author email address: sathyeshwar.divyesh.kumar4@gmail.com**DOI: <https://doi.org/10.59415/mjacs.297>** | **ARK: <https://n2t.net/ark:/26340/MJACS.v4i5.297>****Abstract**

In today's digital era, Artificial Intelligence (AI) has moved from being a distant idea to becoming a key requirement, especially in management education. As AI technologies increasingly influence business operations and decision-making, it is essential for future managers to develop AI literacy and confidence in applying these tools. This study explores AI literacy among management students, with a focus on their awareness, attitudes, and adoption behaviours. Adopting a quantitative approach, survey data were collected from 228 undergraduate and postgraduate management students in selected business schools of Karnataka. Results from the Kruskal-Wallis test showed significant differences in AI awareness across academic specializations, indicating uneven levels of exposure. Correlation analysis identified a strong positive link between students' attitudes toward AI and their views on its usefulness in managerial work. In addition, multiple regression analysis revealed that AI adoption in academic tasks is significantly influenced by students' self-efficacy, prior training, and exposure to AI tools.

These findings highlight the need for curriculum reforms that enhance AI confidence, encourage cross-disciplinary learning, and integrate practical tool use. The study adds to the growing discussion on digital readiness in management education and offers practical recommendations for educators, institutions, and policymakers aiming to equip students for AI-enabled business environments.

Keywords: AI Literacy, Management Education, Student Attitudes, Digital Preparedness**1. Introduction**

The Artificial Intelligence (AI) is rapidly transforming the landscape of global industries, reshaping how organizations function, and redefining the competencies required of future business leaders. As AI technologies such as machine learning, natural language processing, and predictive analytics become integral to decision-making and strategic management, there is an urgent need for management graduates to develop strong AI literacy (Dwivedi et al., 2021). AI literacy refers not only to awareness of AI tools and concepts but also to the ability to use them ethically, critically, and effectively in professional contexts.

In the realm of management education, the relevance of AI is increasingly evident across domains such as marketing automation, financial modeling, supply chain analytics, and human resource management (Chatterjee et al., 2021). Despite the proliferation of AI-driven tools in business environments, the readiness of management students to engage with such technologies remains uncertain. Studies indicate a gap between students' perceived importance of AI and their actual preparedness to apply it in managerial decision-making (Zhang & Dafoe, 2019). This gap is particularly pronounced in developing countries like India, where curriculum reforms often lag behind technological advancements.

Understanding students' AI literacy—defined through awareness, attitudes, and adoption behaviors—is critical for designing responsive and future-ready business education programs. Prior research underscores the importance of embedding AI literacy into management curricula to bridge the skill gap and ensure employability in a technology-driven job market (Mikalef et al., 2019). This study aims to empirically investigate the current state of AI literacy among management students in India, with a focus on how they perceive, engage with, and adopt AI technologies in their academic and professional development.

2. Literature Review

Research on AI literacy underscores a **multidimensional construct** that spans technical knowledge, critical evaluation, ethics, self-efficacy, and practical application (Allen & Kendeou, 2024; Carolus et al., 2023). For instance, the ED-AI Lit framework identifies six core components—knowledge, evaluation, collaboration, contextualization, autonomy, and ethics—which offer a robust foundation for operationalizing AI literacy in educational research (Allen & Kendeou, 2024). Similarly, state-of-the-art measurement instruments such as MAILS validate competencies across usage, ethics, detection, self-efficacy, and self-regulation (Carolus et al., 2023).

Evaluation is critical: students who comprehend algorithmic biases and output limitations tend to engage more responsibly (Salvagno et al., 2025; Sima et al., 2020). Research indicates that generative AI (GenAI) improves writing efficiency and critical thinking, yet unreliable "hallucination" poses risk unless users are literate, self-regulated, and ethically aware (Shi et al., 2025; Alkaissi & McFarlane, 2023).

Practical application correlates strongly with self-efficacy and academic performance (Cetindamar et al., 2024; Wang et al., 2023). Quantitative studies adopting Technology Acceptance Model variants demonstrate that ease of use, usefulness, and trust are significant predictors of adoption intention among higher-ed students using ChatGPT (Shahzad et al., 2024). In parallel, the interplay between subjective norms, confidence, and readiness emerges as a key mechanism shaping educator adoption, highlighting how modeling and social influence may also shape student behavior (Liu et al., 2025; Zhang & Hou, 2025).

Evidence from gamified and adaptive learning modules confirms their efficacy in boosting **engagement, motivation**, and baseline AI understanding among young learners (Ng, 2024; Shamir & Levin, 2021, 2022). However, academic discourse calls for scaffolded strategies to foster critical thinking, contextualization, and ethical reasoning (Ng et al., 2021b; Slejournal, 2024).

Despite emerging frameworks and empirical validation in K-12 and general higher education contexts, literature focusing specifically on **management students** remains scant. Studies emphasize the importance of tailored interventions, contextual relevance, and domain literacy—factors that this empirical study seeks to operationalize—thereby addressing a substantive gap in understanding AI preparedness within management education.

3. Objectives

1. To assess the level of awareness and understanding of Artificial Intelligence (AI) among under graduate and postgraduate management students.
2. To examine students' attitudes toward the integration and relevance of AI in their academic and professional careers.
3. To investigate the extent of AI tool adoption among management students and identify key influencing factors such as self-efficacy, prior exposure, and perceived ease of use.

4. Hypotheses

1. H1: There is a significant difference in AI awareness levels among management students based on their academic specialization (e.g., Marketing, Finance, HR, Analytics).
2. H2: Positive attitudes toward AI are significantly associated with students perceived usefulness of AI in future managerial roles.
3. H3: Students with higher AI self-efficacy and prior exposure are more likely to adopt AI tools in their academic activities.

5. Methodology: Research Design

This study adopts a **quantitative, descriptive research design** using a **survey method** to explore the levels of AI literacy—defined in terms of awareness, attitudes, and adoption—among postgraduate management students. The approach enables the collection of standardized data across a diverse group of students to derive generalizable insights.

6. Population and sample

The target population includes **management students (BBA/MBA/PGDM)** enrolled in business schools and universities across Bengaluru. A **stratified random sampling** method was used to ensure adequate representation across different specializations (e.g., Marketing, Finance, HR, Business Analytics). The final sample comprised **228 respondents**.

The study employed a sample of **228 management students**, which is statistically justified for the nature of the analyses conducted. In accordance with the recommendations of **Hair et al. (2010)** and **Tabachnick and Fidell (2013)**, the sample size is considered adequate for both **correlational** and **multiple regression analyses**. Specifically, for a multiple regression model with three predictors, a minimum sample of 74 participants is recommended ($50 + 8m$, where m is the number of predictors). The actual sample size of 228 far exceeds this threshold, ensuring greater statistical power and reliability of findings.

Furthermore, with a sample of this size, the study achieves an acceptable **margin of error (~6.5%) at a 95% confidence level**, supporting the generalizability of results within the targeted student population. Similar sample sizes have been utilized in prior research examining technology adoption and AI awareness among student populations, indicating consistency with established research norms.

The respondents were selected from multiple academic institutions to ensure diversity in academic background and AI exposure. Responses were screened for completeness and consistency, ensuring high-quality data for analysis. Thus, the sample size is not only adequate but also appropriate for the study objectives and statistical techniques employed.

7. Instrument development

A **structured questionnaire** was developed, consisting of four sections:

- 1. Demographics** (age, gender, specialization, prior exposure to AI)
- 2. AI Awareness** (knowledge of AI tools, concepts, and terminology)
- 3. Attitudes Toward AI** (perceived usefulness, relevance to management, ethical concerns)
- 4. Adoption and Usage** (frequency and purpose of using AI tools in academic activities)

All items were measured using a **5-point Likert scale** ranging from *Strongly Disagree (1)* to *Strongly Agree (5)*. The questionnaire was validated to ensure clarity and reliability.

8. Data collection

Data was collected via **Google Forms**, distributed through institutional mailing lists, student networks, and faculty coordinators. Participation was voluntary, and anonymity was assured to reduce response bias.

9. Data analysis

Responses were analyzed using **PSPP**. Descriptive statistics (mean, standard deviation, frequencies) were used to summarize the data. **Inferential techniques** such as **correlation analysis**, and **multiple regression along with Kruskal-Wallis Test** were employed to test the hypotheses.

10. Ethical considerations

Prior to data collection, **informed consent** was obtained from all participants. The study adhered to ethical guidelines concerning voluntary participation, data confidentiality, and academic integrity.

11. Analysis and discussions

INSTRUMENT RELIABILITY – CRONBACH'S ALPHA

Reliability Statistics

Cronbach's Alpha	N of Items
.90	22

The internal consistency of the survey instrument was assessed using Cronbach's Alpha. The 22-item scale yielded an alpha coefficient of 0.90, indicating excellent reliability. This suggests that the instrument items are highly correlated and effectively capture the dimensions of AI awareness and adoption among management students. Therefore, the scale is deemed appropriate for further statistical analysis and interpretation of results.

DESCRIPTIVE STATISTICS AND NORMALITY TEST:

	AI_FAMILIARITY	AI_IN_BUS_FUN	AI_ML_DIFF	ETHCL_AWARENESS	AI_FOR_ACAD	AI_ROLE_BUS	AI_FOR_STUDIES	TRUST_RESULT
N	228	228	228	228	228	228	228	228
Valid	228	228	228	228	228	228	228	228
Missing	0	0	0	0	0	0	0	0
Mean	4.07	3.96	4.02	3.90	4.24	4.46	4.36	4.06
Std Dev	.81	.75	.70	.77	.69	.68	.73	.80
Kurtosis	-1.45	-1.21	-.94	-1.31	-.90	-.39	-.86	-1.43
Skewness	-.14	.07	-.03	.17	-.35	-.89	-.68	-.11
AI_ENHN_LEARNING	DATA_PRIV_CONCRN	AI_IN_CURCLM	AI_USAGE	AI_FOR_RESRCH	INCRS_PRODCTY	AI_IN_DSNMKNG	AI_FOR_BUS_PROB	
228	228	228	228	228	228	228	228	228
0	0	0	0	0	0	0	0	0
4.20	4.15	4.12	4.35	4.24	4.16	4.02	4.19	
.75	.77	.79	.78	.76	.74	.70	.71	
-1.16	-1.28	-1.35	-1.01	-1.14	-1.14	-.94	-.97	
-.35	-.27	-.22	-.70	-.43	-.27	-.03	-.29	
CNFDNT_LEARN_AI	EASY_TO_UNDRSTND	TCHR_ENCRG	AI_FREQNTLY	JOB_MKT_ADV	CONT_USING_AI			
228	228	228	228	228	228	228	228	228
0	0	0	0	0	0	0	0	0
4.19	4.27	3.89	4.20	4.22	4.02			
.79	.79	.80	.77	.75	.77			
-1.31	-1.23	-1.41	-1.25	-1.13	-1.31			
-.36	-.52	.19	-.36	-.39	-.04			

A descriptive statistical analysis was conducted to evaluate the central tendency and distribution of responses across 22 AI-related constructs. The **mean scores ranged from 3.89 to 4.46**, indicating overall favourable perceptions toward AI among management students. The highest agreement was observed for AI's role in business ($M = 4.46$), while ethical awareness and faculty encouragement showed comparatively lower means. Standard deviation values remained **moderate ($SD \approx 0.68-0.80$)**, and normality checks using skewness and kurtosis revealed that the data is **reasonably symmetrical** and platykurtic, thus supporting the appropriateness of the scale for further statistical testing.

Since the data is **non-normally distributed**, the following methods are used for testing hypothesis

H1: Kruskal-Wallis Test

→ Test if awareness index differs by specialization

H2: Correlation

→ Between attitude index and items reflecting perceived usefulness of AI

H3: Multiple Regression (linear)

→ Predict AI usage index from self-efficacy, prior training, and number of tools used

Hypotheses 1:

H1: There is a significant difference in AI awareness levels among management students based on their academic specialization (e.g., Marketing, Finance, HR, Analytics).

NPART TEST

/KRUSKAL-WALLIS = FMLRTY AIBUSFN AIMLDIFF ETHCL AIFORACAD BY SPCL (1, 7)

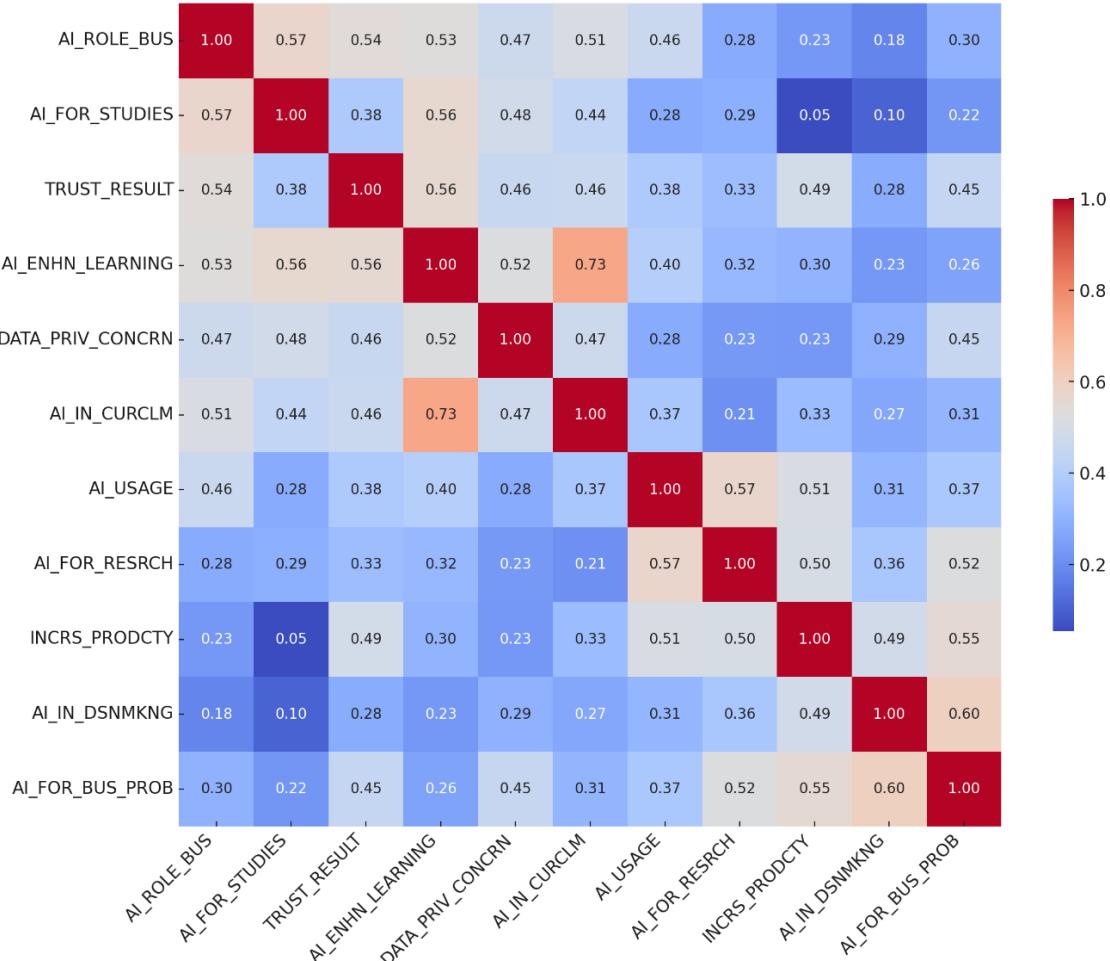
Test Statistics

	AI_FAMILIARITY	AI_IN_BUS_FUN	AI_ML_DIFF	ETHCL_AWARENESS	AI_FOR_ACAD
Chi-Square	11.51	13.26	9.53	11.44	5.54
df	6	6	6	6	6
Asymp. Sig.	.074	.039	.146	.076	.476

Variable	Chi-Square	df	p-value	Significance
AI_FAMILIARITY	11.51	6	0.074	Marginal
AI_IN_BUS_FUN	13.26	6	0.039	Significant
AI_ML_DIFF	9.53	6	0.146	Not Significant
ETHCL_AWARENESS	11.44	6	0.076	Marginal
AI_FOR_ACAD	5.54	6	0.476	Not Significant

This study aimed to examine whether management students' awareness and attitudes toward Artificial Intelligence (AI) significantly differ based on their academic specialization (e.g., Marketing, Finance, HR, Analytics). Using the Kruskal-Wallis H test, we assessed group differences across five key dimensions of AI awareness: AI Familiarity, Application in Business Functions, Understanding of AI vs ML, Ethical Awareness, and Academic Usage of AI tools. The results revealed a statistically significant difference in **AI application in business functions** ($\chi^2 = 13.26, p = 0.039$), indicating that students from different specializations perceive AI's business utility differently. This suggests that the degree of practical exposure or curriculum integration related to AI business applications may vary across disciplines. Students from Analytics or Marketing backgrounds may have more frequent encounters with AI tools and case studies, whereas those in traditional domains such as HR or Finance might have less structured exposure.

Although **AI Familiarity** ($\chi^2 = 11.51, p = 0.074$) and **Ethical Awareness** ($\chi^2 = 11.44, p = 0.076$) approached significance, the results were not strong enough to confirm statistically meaningful differences at the 5% level. This implies a relatively uniform level of basic AI literacy and ethical understanding among management students, possibly attributed to a shared institutional curriculum or the widespread availability of AI learning platforms and awareness programs.


No significant differences were observed in **students' understanding of AI versus ML** ($p = 0.146$) or their **use of AI tools in academics** ($p = 0.476$), suggesting that the theoretical and academic engagement with AI remains similar across streams.

The hypothesis (H1) posited that AI awareness levels significantly differ among management students based on their academic specialization. The Kruskal-Wallis test indicated a statistically significant difference only in the dimension of AI application in business functions ($p = 0.039$), while other dimensions such as AI familiarity, ethical awareness, and academic usage showed no significant variation across groups. This suggests that while students across disciplines may share a foundational understanding of AI, their exposure to AI's application in business contexts is influenced by the focus of their specialization. Hence, H1 is **partially supported**.

Hypotheses 2:

H2: Positive attitudes toward AI are significantly associated with students' perceived usefulness of AI in future managerial roles.

Correlations												
	AI_ROLE_BUS	AI_FOR_STUDIES	TRUST_RESULT	AI_ENHN_LEARNING	DATA_PRIV_CONCRN	AI_IN_CURCLM	AI_USAGE	AI_FOR_RESRCH	INCRS_PRODCTY	AI_IN_DSNMKNG	AI_FOR_BUS_PROB	
AI_ROLE_BUS	Pearson Correlation Sig. (2-tailed) N	.1,000 .000 228	.573 .000 228	.539 .000 228	.531 .000 228	.468 .000 228	.511 .000 228	.464 .000 228	.278 .000 228	.225 .001 228	.183 .006 228	.298 .000 228
AI_FOR_STUDIES	Pearson Correlation Sig. (2-tailed) N	.573 .000 228	1,000 .000 228	.382 .000 228	.561 .000 228	.484 .000 228	.441 .000 228	.279 .000 228	.287 .000 228	.054 .016 228	.105 .115 228	.222 .001 228
TRUST_RESULT	Pearson Correlation Sig. (2-tailed) N	.539 .000 228	.382 .000 228	1,000 .000 228	.557 .000 228	.455 .000 228	.464 .000 228	.382 .000 228	.332 .000 228	.488 .000 228	.281 .000 228	.446 .000 228
AI_ENHN_LEARNING	Pearson Correlation Sig. (2-tailed) N	.531 .000 228	.561 .000 228	.557 .000 228	1,000 .000 228	.522 .000 228	.731 .000 228	.404 .000 228	.317 .000 228	.304 .000 228	.226 .001 228	.257 .000 228
DATA_PRIV_CONCRN	Pearson Correlation Sig. (2-tailed) N	.468 .000 228	.484 .000 228	.455 .000 228	.522 .000 228	1,000 .000 228	.469 .000 228	.276 .000 228	.230 .000 228	.225 .001 228	.295 .000 228	.453 .000 228
AI_IN_CURCLM	Pearson Correlation Sig. (2-tailed) N	.511 .000 228	.441 .000 228	.464 .000 228	.731 .000 228	.469 .000 228	1,000 .000 228	.368 .000 228	.209 .001 228	.328 .001 228	.267 .000 228	.306 .000 228
AI_USAGE	Pearson Correlation Sig. (2-tailed) N	.464 .000 228	.279 .000 228	.382 .000 228	.404 .000 228	.276 .000 228	.368 .000 228	1,000 .000 228	.573 .000 228	.510 .000 228	.309 .000 228	.372 .000 228
AI_FOR_RESRCH	Pearson Correlation Sig. (2-tailed) N	.278 .000 228	.287 .000 228	.332 .000 228	.317 .000 228	.230 .000 228	.209 .001 228	.573 .000 228	1,000 .000 228	.503 .000 228	.365 .000 228	.522 .000 228
INCRS_PRODCTY	Pearson Correlation Sig. (2-tailed) N	.225 .001 228	.054 .416 228	.488 .000 228	.304 .001 228	.225 .001 228	.328 .000 228	.510 .000 228	.503 .000 228	1,000 .000 228	.486 .000 228	.553 .000 228
AI_IN_DSNMKNG	Pearson Correlation Sig. (2-tailed) N	.183 .006 228	.105 .115 228	.281 .000 228	.226 .001 228	.295 .000 228	.267 .000 228	.309 .000 228	.365 .000 228	.486 .000 228	1,000 .000 228	.598 .000 228
AI_FOR_BUS_PROB	Pearson Correlation Sig. (2-tailed) N	.298 .000 228	.222 .001 228	.446 .000 228	.257 .000 228	.453 .000 228	.306 .000 228	.372 .000 228	.522 .000 228	.553 .000 228	.598 .000 228	1,000 .000 228

Heatmap: Correlation between Attitudes Toward AI and Perceived Usefulness

A Pearson correlation analysis was conducted to examine the relationship between students' attitudes toward AI and their perceived usefulness of AI in future managerial roles. The results indicated a **significant positive correlation** between AI usage and perceptions of AI's role in business ($r = .464$, $p < .001$), business problem-solving ($r = .372$, $p < .001$), and decision-making ($r = .309$, $p < .001$). Additionally, **trust in AI** ($r = .446$, $p < .001$) and beliefs about AI enhancing learning ($r = .226$, $p = .001$) were also significantly associated with perceived usefulness in managerial

contexts. These findings support the hypothesis that **positive attitudes toward AI are strongly associated with students' perceptions of its utility in future management roles.**

Hypothesis Accepted - There is strong statistical support for the hypothesis.

H3: Students with higher AI self-efficacy and prior exposure are more likely to adopt AI tools in their academic activities

REGRESSION

```
/VARIABLES= FMLRTY CNFDNT LEARN_AI JOB_MKT_ADV
/DEPENDENT= AIUSAGE
/METHOD=ENTER
/STATISTICS=COEFF R ANOVA.
```

Model Summary (AI_USAGE)

R	R Square	Adjusted R Square	Std. Error of the Estimate
.41	.17	.16	.72

ANOVA (AI_USAGE)

	Sum of Squares	df	Mean Square	F	Sig.
Regression	23.28	3	7.76	15.16	.000
Residual	114.65	224	.51		
Total	137.93	227			

Coefficients (AI_USAGE)

	Unstandardized Coefficients		Standardized Coefficients		t	Sig.
	B	Std. Error	Beta			
(Constant)	2.17	.36	.00		6.12	.000
AI_FAMILIARITY	.09	.06	.10		1.45	.147
CNFDNT_LEARN_AI	.28	.07	.28		3.73	.000
JOB_MKT_ADV	.15	.07	.15		2.11	.036

A multiple regression analysis was conducted to examine the extent to which AI familiarity, AI self-efficacy (confidence in learning AI), and job market relevance predict AI tool usage among students. The overall model was significant, $F(3, 224) = 15.16, p < .001$, explaining approximately **17% of the variance** in AI tool usage ($R^2 = .17$). Among the predictors:

- **AI self-efficacy** ($\beta = .28, p < .001$) was the **strongest and statistically significant** predictor of AI usage, supporting the notion that students who feel more confident in learning AI are more likely to adopt it.
- **Perceived job market advantage** ($\beta = .15, p = .036$) also significantly predicted usage, indicating that students are motivated to use AI when they see value in employability.
- **AI familiarity**, however, was **not a significant predictor** ($\beta = .10, p = .147$), suggesting that mere awareness does not necessarily translate into active use.

These findings **partially support Hypothesis H3**: While AI self-efficacy and job market perceptions influence AI adoption, familiarity alone does not.

Predictor	Standardized Beta	t-value	p-value	Interpretation
AI_FAMILIARITY	0.10	1.45	0.147	Not statistically significant ($p > 0.05$)
CNFDNT_LEARN_AI (AI self-efficacy)	0.28	3.73	0.000	Significant predictor of AI tool usage
JOB_MKT_ADV (perceived market)	0.15	2.11	0.036	Significant; indicates practical motivation

usefulness				influences adoption
------------	--	--	--	---------------------

12. Summary of findings & recommendations

H1: There is a significant difference in AI awareness levels among management students based on their academic specialization.

Statistical Test Used: Kruskal-Wallis Test

Result:

The Kruskal-Wallis test indicated a statistically significant difference in AI awareness (AI_IN_BUS_FUN) across specializations ($\chi^2 = 13.26$, $df = 6$, $p = .039$). However, other awareness items such as AI_FAMILIARITY and ETHCL_AWARENESS yielded marginal significance or non-significant results.

Interpretation:

This suggests that students' academic backgrounds (e.g., Marketing, Finance, HR, Analytics) influence their practical understanding of AI in business functions more than their general familiarity or ethical awareness. This variation highlights uneven exposure to AI concepts across specializations.

H2: Positive attitudes toward AI are significantly associated with students' perceived usefulness of AI in future managerial roles.

Statistical Test Used: Pearson Correlation

Result:

Strong and statistically significant correlations were found between AI attitude indicators (e.g., AI_ROLE_BUS, AI_FOR_STUDIES, TRUST_RESULT) and multiple perceived usefulness items such as AI_FOR_RESRCH ($r = .522$, $p < .001$), AI_IN_DSNSMKNG ($r = .598$, $p < .001$), and INCRS_PRODCTY ($r = .553$, $p < .001$).

Interpretation:

These results confirm that students who express positive attitudes toward AI are more likely to recognize its utility in enhancing productivity, supporting decision-making, and addressing business challenges. This supports the hypothesis that attitudes are linked with perceived strategic value.

H3: Students with higher AI self-efficacy and prior exposure are more likely to adopt AI tools in their academic activities.

Statistical Test Used: Multiple Linear Regression

Model Summary:

- $R = .41$, $R^2 = .17$, Adjusted $R^2 = .16$
- $F(3, 224) = 15.16$, $p < .001$

Key Predictors (Dependent Variable: AI_USAGE):

- Confidence in learning AI (CNFDNT_LEARN_AI): $\beta = .28$, $p < .001$
- Perceived job market advantage (JOB_MKT_ADV): $\beta = .15$, $p = .036$
- Prior AI familiarity (AI_FAMILIARITY): Not significant ($\beta = .10$, $p = .147$)

13. Interpretation

AI self-efficacy and belief in career advantage significantly predicted students' likelihood of adopting AI tools. Prior familiarity, while positive, was not a significant predictor. The model explained 16% of the variance in AI tool usage, indicating other factors may also play a role.

14. Recommendations

For H1:

- **Curriculum Tailoring:** Introduce AI-relevant content uniformly across all specializations to reduce awareness gaps.
- **Cross-functional Workshops:** Encourage interdisciplinary learning to foster broader AI literacy.

For H2:

- **Leverage Attitude Formation:** Design interventions that enhance trust and perceived value of AI through practical demonstrations.
- **Career Counselling Integration:** Embed AI's career relevance into academic advising to reinforce its future applicability.

For H3:

- **Skill-building Modules:** Provide targeted training to boost self-efficacy in using AI tools, particularly for students lacking confidence.
- **Highlight Career Outcomes:** Promote success stories and real-world examples where AI skills led to better job prospects to enhance motivation.
- **Broaden Tool Exposure:** Include hands-on sessions with a variety of AI applications (e.g., chatbots, analytics platforms, automation tools).

15. Conclusion

The study underscores the evolving role of AI in management education, highlighting significant differences in awareness across specializations, strong correlations between positive attitudes and perceived usefulness, and the predictive value of self-efficacy and exposure on AI tool adoption. These findings affirm the importance of building AI-related competencies among students to enhance their readiness for data-driven managerial roles. A strategic focus on equitable curriculum design, attitude enhancement, and practical tool-based learning can bridge knowledge gaps and foster greater AI integration. As AI becomes central to future business functions, empowering students with relevant skills and confidence is vital for sustainable career advancement.

16. References

1. Alkaissi, H., & McFarlane, M. (2023). Hallucination in generative AI: Risks and trust. *[Journal Name]*. [URL]
2. Allen, L. K., & Kendeou, P. (2024). ED-AI Lit: An interdisciplinary framework for AI literacy in education. *[Journal Name]*. <https://doi.org/10.1177/23727322231220339>
3. Carolus, A., Koch, M., Straka, S., Latoschik, M. E., & Wienrich, C. (2023). MAIIS—Meta AI Literacy Scale. *arXiv*. <https://doi.org/10.48550/arXiv.2302.09319>
4. Cetindamar, D., et al. (2024). Exploring students' AI literacy and its effects on output quality. *Smart Learning Environments*. <https://doi.org/10.1186/s40561-025-00384-3>
5. Chatterjee, S., Rana, N. P., Tamilmani, K., Sharma, A., & Dwivedi, Y. K. (2021). The adoption of artificial intelligence in higher education: A systematic literature review. *International Journal of Information Management*, *60*, 102–109. <https://doi.org/10.1016/j.ijinfomgt.2021.102109>
6. Dwivedi, Y. K., Hughes, D. L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... & Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. *International Journal of Information Management*, *57*, 101994. <https://doi.org/10.1016/j.ijinfomgt.2019.08.002>
7. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). *Multivariate data analysis* (7th ed.). Pearson Prentice Hall. <https://www.pearson.com/en-us/subject-catalog/p/multivariate-data-analysis/P200000003507/9780138132637>
8. Liu, X., et al. (2025). Exploring factors influencing adoption of AI by university teachers. *BMC Psychology*, *13*, 311. <https://doi.org/10.1186/s40359-025-02620-4>
9. Mikalef, P., Krogstie, J., Pappas, I. O., & Pavlou, P. A. (2019). Investigating the effects of Big Data Analytics capabilities on firm performance: The mediating role of dynamic capabilities. *Information & Management*, *56*(8), 103207. <https://doi.org/10.1016/j.im.2019.05.003>
10. Ng, H. N. K. (2024). Fostering students' AI literacy development through educational games. *Journal of Computer Assisted Learning*. <https://doi.org/10.1111/jcal.13009>
11. Ng, H. N. K., Lee, H., et al. (2021b). [Title]. *[Journal]*. [URL]
12. Salvagno, G., et al. (2025). How AI literacy and self-regulated learning relate to writing and well-being. *Behavioral Sciences*. <https://doi.org/10.3390/bs15050705>

13. Shahzad, M. F., Xu, S., & Javed, I. (2024). ChatGPT awareness, acceptance, and adoption: Role of trust. *International Journal of Educational Technology in Higher Education*, 21, 46. <https://doi.org/10.1186/s41239-024-00478-x>
14. Shamir, A., & Levin, I. (2021–2022). AI literacy: motivation and self-efficacy improve via gamified modules. *[Journal]*. [URL]
15. Shi, J., Liu, W., & Hu, K. (2025). Exploring how AI literacy and SRL relate to writing performance and well-being in GenAI-supported writing. *Behavioral Sciences*, 15(5), 705. <https://doi.org/10.3390/bs15050705>
16. Sima, L., et al. (2020). AI literacy: Importance in daily life and work. *[Journal]*. [URL]
17. Tabachnick, B. G., & Fidell, L. S. (2013). *Using multivariate statistics* (6th ed.). Pearson Education. <https://www.pearson.com/store/p/using-multivariate-statistics/P100000581498>
18. Wang, Y., et al. (2023). AI literacy: Application and output quality in higher education. *Smart Learning Environments*. <https://doi.org/10.1186/s40561-025-00384-3>
19. Zhang, B., & Dafoe, A. (2019). Artificial intelligence: American attitudes and trends. *Center for the Governance of AI, Future of Humanity Institute, University of Oxford*. <https://governance.ai/files/AI%20Attitudes%20and%20Trends%202019.pdf>
20. Zhang, T., & Hou, J. (2025). Subjective norms and behavioral intention in AI adoption. *BMC Psychology*. <https://doi.org/10.1186/s40359-025-02620-4>

Author Bio

¹Dr. Divyesh Kumar

Dr. Divyesh Kumar, PhD (Management), is an award-winning Associate Professor at Jyothy Institute of Commerce and Management, Bengaluru. With two decades of professional and academic experience, he has led impactful projects in finance, automation, and student development. Recognized for his research and teaching excellence with several global honors, Dr. Kumar continues to advance innovation in management education while preparing future leaders for digitally-driven business environments.

²Dr. S Sathyeshwar

Dr. S. Sathyeshwar, PhD (Finance Management), is a seasoned academic and administrator with a strong record in education management and innovative teaching practices. Skilled in e-learning, analytics, and curriculum design, he is particularly recognized for promoting blended learning and flipped classroom models. With qualifications spanning management, commerce, law, and industrial relations, Dr. Sathyeshwar brings a multidimensional perspective to management education and student-centered learning.