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1. Introduction 

The flow of Newtonian and non-Newtonian fluids in a 

porous surface channel has attracted the interest of many 

investigators in view of its applications in engineering 

practice. One of these applications is to treat the internal 

motion of the gases in solid rocket motors as the 

superposition of a steady average flow and a 

conglomeration of unsteady fields1. 

The average flow, also commonly known as the mean 

flow, represents the bulk motion of the 

gases in the rocket and can be approximated by the 

steady flow in a porous pipe. Most scientific problems 

such as two-dimensional viscous flow between slowly 

expanding or contracting walls with weak permeability 

and other fluid mechanic problems are inherently 

nonlinear. Except a limited number of these problems, 

most of them do not have analytical solution. Therefore, 

these nonlinear equations should be solved using other 

methods. 

Stebel2 conducted a study on shape stability of 

incompressible fluids subject to Navier slip, focusing on 

the equations of motions for incompressible fluids that 

slip at the wall. It was noted that the issue of boundary 

conditions in fluid mechanics has been studied for over 

two centuries by many distinguished scientists but still it 

is subject to discussion in the mathematical community. 

Makinde and Osalusi3 investigated the steady flow in a 

channel with slip at the permeable boundaries. They 

reported that an increase in the positive value of flow 

Reynolds number(Re) represents an increase in the fluid 

suction while an increase in the negative value of Re 

represents an increase in the fluid injection. They also 

noticed that wall skin friction increases with suction and 

decreases with injection and that, both slip parameter and 

magnetic field have great influence on wall skin friction. 

A similar study was done by Makinde4 on extending the 

utility of perturbation series in problems of laminar flow 

in a porous pipe and diverging channel, by considering a 

steady ax symmetric flow of a viscous incompressible 

fluid driven.  

along a pipe by the combined effect of the wall 

deceleration and suction. It was stated that a bifurcation 

occurs where the solutions of a non-linear system change 

their qualitative character as a parameter changes. In 

particular, bifurcation theory is about how the number of 

steady solutions of a system depends on a parameter. 

Yogeshi and Denn5 conducted a study on planar 

contraction flow with a slip boundary condition in which 
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they analyzed the creeping flow of Newtonian and 

inelastic non Newtonian fluids in a planar contraction 

with Navier (linear) slip boundary condition. It was 

found that, curved streamlines arises in the presence of 

wall slip, which may be a factor in the initiation of 

instabilities associated with entry flow. 

The flow of an incompressible viscous fluid between a 

uniformly porous upper plate and a lower impermeable 

plate that is subjected to a Navier slip is modeled and 

analyzed in this study using analytical approaches6-12. 

2. Mathematical Formulation 

Consider the laminar, isothermal and incompressible 

flow in a cylindrical domain bounded by permeable 

surfaces with one end closed at the head well while the 

other remains open. A schematic diagram of the problem 

is shown in Fig. I. The walls expand radially at a time-

dependent rate . Furthermore, the origin  is 

assumed to be the center of the classic squeeze film 

problem. This enables us to assume flow symmetry about 

. Under these assumptions, the transport equation 

for the unsteady flow is given as follows: 

Where  and are the dimensional pressure, 

density, kinematic viscosity and time, respectively. 

Auxiliary conditions can be specified such as: 

Using some modification and special variable13, and the 

we have:  

With the following boundary conditions: 

The resulting equation.5 is the classic Berman's 

formula14, with α = 0 (channel with stationary walls). 

After the flow field is found, the normal pressure 

gradient can be obtained by substituting the velocity 

components into Equations.1-3. Hence it is: 

Introducing the non-dimensional shear stress , 

we have: 

3. Solution Procedure  

Let  be analytic in a domain  and let 

represents any point in . The function  is then 

represented by one power series whose center is located 
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Figure I: Schematic diagram of problem  
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at . The Taylor series expansion function of  is 

in the form of: 

As explained in [4] the differential transformation of the 

function  is defined as follows: 

 Where  is the original function and  is the 

transformed function. The differential inverse transform 

of is defined as follows: 

Mathematical operations performed by DTM are listed in 

Table I. 

Taking differential transform of equation. 10 by using 

the related definitions in Table I, we obtain: 

In order to solve equation.12, we consider the following 

boundary conditions: 

However it can be yield that the closed form of the 

solutions is: 

4. Results and Discussions 

The objective of the present study was to apply DTM to 

obtain an explicit analytic solution of laminar, 

isothermal, incompressible viscous flow in a rectangular 

domain bounded by two moving porous walls, which 

enable the fluid to enter or exit. 

Figure II shows the effects of changing the Reynolds 

number while maintaining the values of Non-

dimensional wall dilation rate. The result shows that as 

the Reynolds number increases, the normal component of 

velocity decrease. In Figure II a proper comparison is 

also made between the numerical solution obtained by 
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Figure II Effect of Reynolds number on axial velocity  
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Runge Kutta method and RVIM. A great agreement 

between analytical solutions and numerical ones are 

illustrated. 

In Figure III, the effects of Non-dimensional wall 

dilation rate with constant Reynolds number on radial 

velocity can be illustrated. 

For every level of injection or suction, in the case of 

expanding wall, increasing α leads to higher radial 

velocity near the center and the lower radial velocity near 

the wall. The reason is that the flow toward the center 

becomes greater to make up for the space caused by the 

expansion of the wall and as a result, the radial velocity 

also becomes greater near the center. 

In Figure IV the pressure drop for case can be 

illustrated. The effects of dilation number is also seen 

through plot. 

Figure IV shows that for every level of injection or 

suction, the absolute pressure change in the normal 

direction is lowest near the central portion. Furthermore, 

by increasing non-dimensional wall dilation rates the 

absolute value of pressure distribution in the normal 

direction increases. 

Non-dimensional wall dilation rates, are plotted in Fig. 

V. We can observe from Fig. V that the absolute shear 

stress along the wall surface increases in proportion to x. 

Furthermore, by increasing nondimensional wall dilation 

rates the absolute value of shear stress increases. 

Conclusions 

A study of an incompressible two-dimensional flow in a 

channel with one porous wall is presented in this 

research. The governing continuity and momentum 

equations together with the associated boundary 

conditions are first reduced to a set of self similar non-

linear coupled ordinary differential equations using 

similarity transformations. Then we solved the ordinary 

differential equation by DTM and the numerical method. 
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